3.530 \(\int \frac {\sec (c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=137 \[ \frac {(3 A+5 B+19 C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {(7 A+B-9 C) \tan (c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac {(A-B+C) \tan (c+d x) \sec (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}} \]

[Out]

1/32*(3*A+5*B+19*C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)-1/4*(A-B+C
)*sec(d*x+c)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(5/2)+1/16*(7*A+B-9*C)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.098, Rules used = {4078, 4000, 3795, 203} \[ \frac {(3 A+5 B+19 C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {(7 A+B-9 C) \tan (c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac {(A-B+C) \tan (c+d x) \sec (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

((3*A + 5*B + 19*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d)
- ((A - B + C)*Sec[c + d*x]*Tan[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) + ((7*A + B - 9*C)*Tan[c + d*x])/(1
6*a*d*(a + a*Sec[c + d*x])^(3/2))

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4000

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(a*B*m + A*b*
(m + 1))/(a*b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, A, B, e, f}, x
] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] && LtQ[m, -2^(-1)]

Rule 4078

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[((a*A - b*B + a*C)*Cot[e + f*x]*Csc[e + f*x]*(a + b*Cs
c[e + f*x])^m)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Sim
p[a*B - b*C - 2*A*b*(m + 1) - (b*B*(m + 2) - a*(A*(m + 2) - C*(m - 1)))*Csc[e + f*x], x], x], x] /; FreeQ[{a,
b, e, f, A, B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx &=-\frac {(A-B+C) \sec (c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {\int \frac {\sec (c+d x) \left (a (3 A+B-C)-\frac {1}{2} a (A-B-7 C) \sec (c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {(A-B+C) \sec (c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {(7 A+B-9 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(3 A+5 B+19 C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {(A-B+C) \sec (c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {(7 A+B-9 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac {(3 A+5 B+19 C) \operatorname {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=\frac {(3 A+5 B+19 C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(A-B+C) \sec (c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {(7 A+B-9 C) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 25.39, size = 7163, normalized size = 52.28 \[ \text {Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sec[c + d*x]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

fricas [A]  time = 0.54, size = 511, normalized size = 3.73 \[ \left [-\frac {\sqrt {2} {\left ({\left (3 \, A + 5 \, B + 19 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (3 \, A + 5 \, B + 19 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (3 \, A + 5 \, B + 19 \, C\right )} \cos \left (d x + c\right ) + 3 \, A + 5 \, B + 19 \, C\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left ({\left (7 \, A + B - 9 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (3 \, A + 5 \, B - 13 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {\sqrt {2} {\left ({\left (3 \, A + 5 \, B + 19 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (3 \, A + 5 \, B + 19 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (3 \, A + 5 \, B + 19 \, C\right )} \cos \left (d x + c\right ) + 3 \, A + 5 \, B + 19 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, {\left ({\left (7 \, A + B - 9 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (3 \, A + 5 \, B - 13 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[-1/64*(sqrt(2)*((3*A + 5*B + 19*C)*cos(d*x + c)^3 + 3*(3*A + 5*B + 19*C)*cos(d*x + c)^2 + 3*(3*A + 5*B + 19*C
)*cos(d*x + c) + 3*A + 5*B + 19*C)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*co
s(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) -
4*((7*A + B - 9*C)*cos(d*x + c)^2 + (3*A + 5*B - 13*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*s
in(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), -1/32*(sqrt(2)*((
3*A + 5*B + 19*C)*cos(d*x + c)^3 + 3*(3*A + 5*B + 19*C)*cos(d*x + c)^2 + 3*(3*A + 5*B + 19*C)*cos(d*x + c) + 3
*A + 5*B + 19*C)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x
+ c))) - 2*((7*A + B - 9*C)*cos(d*x + c)^2 + (3*A + 5*B - 13*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*
x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]

________________________________________________________________________________________

giac [A]  time = 2.81, size = 205, normalized size = 1.50 \[ \frac {\sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} {\left (\frac {2 \, \sqrt {2} {\left (A a^{5} - B a^{5} + C a^{5}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{8} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} - \frac {\sqrt {2} {\left (5 \, A a^{5} + 3 \, B a^{5} - 11 \, C a^{5}\right )}}{a^{8} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {\sqrt {2} {\left (3 \, A + 5 \, B + 19 \, C\right )} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a^{2} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}}{32 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

1/32*(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*(2*sqrt(2)*(A*a^5 - B*a^5 + C*a^5)*tan(1/2*d*x + 1/2*c)^2/(a^8*sgn(t
an(1/2*d*x + 1/2*c)^2 - 1)) - sqrt(2)*(5*A*a^5 + 3*B*a^5 - 11*C*a^5)/(a^8*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))*ta
n(1/2*d*x + 1/2*c) + sqrt(2)*(3*A + 5*B + 19*C)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x +
 1/2*c)^2 + a)))/(sqrt(-a)*a^2*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d

________________________________________________________________________________________

maple [B]  time = 2.08, size = 875, normalized size = 6.39 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x)

[Out]

-1/32/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))*(3*A*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(
d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)^2+5*B*ln(((-2*cos(
d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x
+c)^2*sin(d*x+c)+19*C*cos(d*x+c)^2*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c
))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+6*A*sin(d*x+c)*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin
(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)+10*B*sin(d*x+c)*(-2*cos(d*x+
c)/(1+cos(d*x+c)))^(1/2)*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*cos(d*x
+c)+38*C*sin(d*x+c)*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+
c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)+3*A*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(
d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-14*A*cos(d*x+c)^3+5*B*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(
1/2)*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*sin(d*x+c)-2*B*cos(d*x+c)^3
+19*C*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*sin(d*x+c)+18*C*cos(d*x+c)^3+8*A*cos(d*x+c)^2-8*B*cos(d*x+c)^2+8*C*cos(d*x+c)^2+6*A*cos(d*x+c)+10*B
*cos(d*x+c)-26*C*cos(d*x+c))/(1+cos(d*x+c))/sin(d*x+c)^3/a^3

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\cos \left (c+d\,x\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + a/cos(c + d*x))^(5/2)),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + a/cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sec(c + d*x)/(a*(sec(c + d*x) + 1))**(5/2), x)

________________________________________________________________________________________